题目内容
12.已知:如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E,且AD=CE.(1)若BC在DE的同侧(如图①)求证:BA⊥AC.
(2)若BC在DE的两侧(如图②),问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.
分析 (1)根据直角三角形全等的判定方法HL易证得△ABD≌△CAE,可得∠DAB=∠ACE,再根据三角形内角和定理即可证得结论;
(2)与(1)同理结论仍成立.
解答 证明:∵BD⊥DE于D,CE⊥DE于E,
∴∠ADB=∠CEA=90°,
在Rt△ADB和Rt△CEA中,
$\left\{\begin{array}{l}{AB=CA(已知)}\\{AD=CE(已知)}\end{array}\right.$
∴Rt△ABD≌Rt△CAE(HL),
∴∠DAB=∠ACE.
又∵∠ACE+∠CAE=90°,
∴∠DAB+∠CAE=90°
∴∠BAC=90°,
即AB⊥AC;
(2)AB⊥AC
∵BD⊥DE于D,CE⊥DE于E,
∴∠ADB=∠CEA=90°,
在Rt△ADB和Rt△CEA中,
$\left\{\begin{array}{l}{AB=CA(已知)}\\{AD=CE(已知)}\end{array}\right.$
∴Rt△ABD≌Rt△CAE(HL),
∴∠DAB=∠ACE.
又∵∠ACE+∠CAE=90°,
∴∠DAB+∠CAE=90°
∴∠BAC=90°,
即AB⊥AC.
点评 本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键,属中档题.
练习册系列答案
相关题目
7.
小东同学在学习了二次函数图象以后,自己提出了这样一个问题:
探究:函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质.
小东根据学习函数的经验,对函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:
(1)函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的自变量x的取值范围是x≠1;
(2)下表是y与x的几组对应值.
则m的值是$\frac{29}{6}$;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是$(2,\frac{3}{2})$,结合函数的图象,
写出该函数的其他性质(一条即可):当x<1时,y随x的增大而减小.
探究:函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质.
小东根据学习函数的经验,对函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:
(1)函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的自变量x的取值范围是x≠1;
(2)下表是y与x的几组对应值.
| x | … | -2 | -1 | 0 | $\frac{1}{2}$ | $\frac{2}{3}$ | $\frac{4}{3}$ | $\frac{3}{2}$ | 2 | 3 | 4 | … |
| y | … | $\frac{25}{6}$ | $\frac{3}{2}$ | $-\frac{1}{2}$ | $-\frac{15}{8}$ | $-\frac{53}{18}$ | $\frac{55}{18}$ | $\frac{17}{8}$ | $\frac{3}{2}$ | $\frac{5}{2}$ | m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是$(2,\frac{3}{2})$,结合函数的图象,
写出该函数的其他性质(一条即可):当x<1时,y随x的增大而减小.