题目内容
7.在实数-$\sqrt{2}$,$\frac{π}{3}$,$\frac{1}{7}$,0.80108,$\sqrt{4}$,0.$\stackrel{•}{3}$$\stackrel{•}{1}$中无理数的个数为( )| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
解答 解:-$\sqrt{2}$,$\frac{π}{3}$是无理数,
故选:B.
点评 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,$\sqrt{6}$,0.8080080008…(每两个8之间依次多1个0)等形式.
练习册系列答案
相关题目
17.下列算式中,运算结果为负数的是( )
| A. | -(-2) | B. | |-2| | C. | -22 | D. | (-2)2 |