题目内容
一组数据的众数是 .
8
如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)(4分)求证:BE=CE.
(2)(4分)求∠BEC的度数.
比较大小:3__________ -2(填>、<或=)
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C、F、D的抛物线为。
(1)求点D的坐标(用含m的式子表示)
(2)若点G的坐标为(0,-3),求该抛物线的解析式。
(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出P的坐标,若不存在,说明理由。
若一个等腰三角形的两边长分别是2和5,则它的周长为
A.12 B.9 C.12或9 D.9或7
如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则弧BE的长度为 .
如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数; (2)求证:直线ED与⊙O相切.
如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 米.
计算的结果是 ( )
(A) (B) (C) (D)