题目内容

20.若m、n满足|2m+3|+(n-2)4=0,则mn的值等于(  )
A.$\frac{9}{4}$B.$\frac{3}{2}$C.-$\frac{9}{4}$D.0

分析 根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.

解答 解:由题意得,2m+3=0,n-2=0,
解得m=-$\frac{3}{2}$,n=2,
所以,mn=(-$\frac{3}{2}$)2=$\frac{9}{4}$.
故选A.

点评 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.

练习册系列答案
相关题目
9.(1)如图1,已知△ABC中,D是BC的中点,E是AC上一点,$\frac{AE}{EC}$=$\frac{1}{3}$,连结AD与BE相交于点F,求$\frac{AF}{FD}$的值.
小英、小明和小聪各自经过独立思考,分别得到一种添加辅助线的方法从而解决了问题,小明的解法是:
解:过点C作CH∥BE交AD的延长线于点H(如图1-1).
∵CH∥BE,D是BC的中点,
∴$\frac{FH}{FD}$=$\frac{BC}{BD}$=$\frac{2}{1}$.
∵CH∥FE,$\frac{AE}{EC}$=$\frac{1}{3}$,
∴$\frac{AF}{FH}$=$\frac{AE}{EC}$=$\frac{1}{3}$.
∴$\frac{AF}{FD}$=$\frac{AF}{FH}$•$\frac{FH}{FD}$=$\frac{1}{3}$×$\frac{2}{1}$=$\frac{2}{3}$.
小英添加的辅助线是:过点D作DG∥BE交AC于点G(如图1-2);小聪添加的辅助线是:过点A作AM∥BE交CB的延长线于点M(如图1-3);请你在小英和小聪辅助线的添法中选择一种完成解答.
(2)①如图2-1,△ABC中,点D是BC的中点,点E是AC上一点,$\frac{AE}{EC}=\frac{a}{b}$,连结AD与BE相交于点F,则$\frac{AF}{FD}$=$\frac{2a}{b}$(用含a、b的式子表示).
②如图2-2,△ABC中,D、E分别是BC、AC上的点,$\frac{BD}{DC}$=$\frac{m}{n}$,$\frac{AE}{EC}$=$\frac{a}{b}$,连结AD与BE相交于点F,求$\frac{AF}{FD}$的值(用含a、b、m、n的式子表示).
(3)如图3,△ABC中,点D、E分别在BC、AC上,$\frac{BD}{CD}$=$\frac{1}{2}$,$\frac{AE}{EC}$=$\frac{2}{3}$,连结AD与BE相交于点F,已知△ABC的面积为45,求△ABF和四边形CDFE的面积.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网