题目内容
已知
=2,
=4,
=3.则a=
,b=
c=
| ab |
| a+b |
| ac |
| a+c |
| cb |
| c+b |
| 24 |
| 5 |
| 24 |
| 5 |
| 24 |
| 7 |
| 24 |
| 7 |
24
24
.分析:根据
=2可得
+
=
,同理求出
+
=
,
+
=
,三式相加后再分别减去各式即可得到
、
和
的值,于是a、b和c的值求出.
| ab |
| a+b |
| 1 |
| a |
| 1 |
| b |
| 1 |
| 2 |
| 1 |
| b |
| 1 |
| c |
| 1 |
| 3 |
| 1 |
| a |
| 1 |
| c |
| 1 |
| 4 |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
解答:解:∵
=2,
∴
+
=
…①,
同理可知:
+
=
…②,
+
=
…③,
①+②+③=2(
+
+
)=
,
即(
+
+
)=
…④,
④-①=
=
-
=
,
即c=24,
④-②=
=
,
即b=
,
④-③=
=
,
即a=
,
故答案为
、
、24.
| ab |
| a+b |
∴
| 1 |
| a |
| 1 |
| b |
| 1 |
| 2 |
同理可知:
| 1 |
| a |
| 1 |
| c |
| 1 |
| 4 |
| 1 |
| b |
| 1 |
| c |
| 1 |
| 3 |
①+②+③=2(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 13 |
| 12 |
即(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 13 |
| 24 |
④-①=
| 1 |
| c |
| 13 |
| 24 |
| 1 |
| 2 |
| 1 |
| 24 |
即c=24,
④-②=
| 1 |
| b |
| 7 |
| 24 |
即b=
| 24 |
| 7 |
④-③=
| 1 |
| a |
| 5 |
| 24 |
即a=
| 24 |
| 5 |
故答案为
| 24 |
| 5 |
| 24 |
| 7 |
点评:本题主要考查对称式和轮换对称式的知识点,解答本题的关键是求出
+
+
的值,此题难度不大.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
练习册系列答案
相关题目