题目内容

如图,在△ABC中,∠BAC=126°,MP和NQ分别是AB和AC的垂直平分线,求∠PAQ的度数.
考点:线段垂直平分线的性质
专题:
分析:先根据三角形内角和等于180°求出∠ABP+∠ACQ=75°,再根据线段垂直平分线的性质∠PAB=∠ABP,∠QAC=∠ACQ,所以∠PAB+∠QAC=75°,便不难求出∠PAQ的度数为30°.
解答:解:∵∠BAC=126°,
∴∠ABP+∠ACQ=180°-126°=54°,
∵MP、NQ分别垂直平分AB和AC,
∴PB=PA,QC=QA.
∴∠PAB=∠ABP,∠QAC=∠ACQ,
∴∠PAB+∠QAC=∠ABP+∠ACQ=54°,
∴∠PAQ=126°-54°=72°.
点评:此题考查了线段垂直平分线的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网