题目内容
5.分析 易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.
解答 解:∵∠BAD=∠C,∠B=∠B,
∴△BAD∽△BCA,
∴$\frac{BA}{BC}$=$\frac{BD}{BC}$.
∵AB=6,BD=4,
∴$\frac{6}{BC}$=$\frac{4}{6}$,
∴BC=9,
∴CD=BC-BD=9-4=5.
点评 本题主要考查的是相似三角形的判定与性质,由角等联想到三角形相似是解决本题的关键.
练习册系列答案
相关题目
15.下列各组数中,互为相反数的是 ( )
| A. | 3.2与-2.3 | B. | -(-5)与-5 | C. | -(-4)与-8 | D. | -$\frac{1}{2}$与-[-(-$\frac{1}{2}$)] |
16.若a<0,b>0,且|a|>|b|,则不正确的是( )
| A. | ab<0 | B. | $\frac{a}{b}$<0 | C. | a+b>0 | D. | a-b<0 |
13.若$a=\frac{2003}{2013},b=\frac{2004}{2014},c=\frac{2005}{2015}$,则a,b,c的大小关系是( )
| A. | c>b>a | B. | a>c>b | C. | a>b>c | D. | c>a>b |
5.下列计算中正确的是( )
| A. | a3•a3=a9 | B. | (a3)2=a5 | C. | a2+a3=2a5 | D. | (-a2)3=-a6 |