题目内容

13.已知二次函数y=ax2+bx+c的自变量x与函数值y之间满足下列数量关系:
x245
y=ax2+bx+c0.370.374
那么(a+b+c)($\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$+$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$)的值为(  )
A.24B.20C.10D.4

分析 把x=2,y=0.37;x=4,y=0.37代入解析式得到b=-6a,则可确定抛物线的对称轴为直线x=3,利用抛物线的对称性得到x=1时,y=4,即a+b+c=4,然后利用整体代入的方法计算(a+b+c)($\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$+$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$)的值.

解答 解:∵x=2,y=0.37;x=4,y=0.37,
∴$\left\{\begin{array}{l}{4a+2b+c=0.37}\\{16a+2b+c=0.37}\end{array}\right.$,
∴12a+2b=0,解得b=-6a,
∴抛物线的对称轴为直线x=-$\frac{b}{2a}$=-$\frac{-6a}{2a}$=3,
∴x=1与x=5时的函数值相等,
∴x=1时,y=4,即a+b+c=4,
∴(a+b+c)($\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$+$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$)=4×(-$\frac{b}{a}$)=4×(-$\frac{-6a}{a}$)=24.
故选A.

点评 本题考查了二次函数图形上点的坐标特征:利用抛物线上的点满足抛物线解析式,可判断点是否在抛物线上或确定点的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网