题目内容
如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )
A. 122° B. 151° C. 116° D. 97°
有一座抛物线拱型桥,在正常水位时,水面的宽为米,拱桥的最高点到水面的距离为米,点是的中点,如图,以点为原点,直线为轴,建立直角坐标系.
(1)求该抛物线的表达式;
(2)如果水面上升米(即)至水面,点在点的左侧,
求水面宽度的长.
若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为( )
A. 4 B. ﹣4 C. 16 D. ﹣16
如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为_____.
如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为( )
A. (5,) B. (5,1) C. (6,) D. (6,1)
如图1,在△ABC中,AB=AC,以△ABC的边AB为直径的⊙O角边BC于点E,过点E作DE⊥AC交AC于D.
(1)求证:DE是⊙O的切线;
(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和EF的长.
如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1∶,求大楼AB的高度是多少?(结果保留根号)
如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE。F为AB上一点,且BF=DE,连接FC.
(1)若DE=1,CF=2,求CD的长。
(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=600,求证:AF+CE=AC.
下列各式正确的是( )
A. |a﹣b|=|b﹣a| B. a>﹣a
C. |﹣2|=﹣2 D. a2>0(a为任一实数)