ÌâÄ¿ÄÚÈÝ
17£®ÔĶÁÏÂÃæ²ÄÁÏ£ºÐ¡ê»Óöµ½ÕâÑùÒ»¸öÎÊÌ⣺Èçͼ1£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬BEÊÇAC±ßÉϵÄÖÐÏߣ¬µãDÔÚBC±ßÉÏ£¬CD£ºBD=1£º2£¬ADÓëBEÏཻÓÚµãP£¬Çó$\frac{AP}{PD}$µÄÖµ£®
С껷¢ÏÖ£¬¹ýµãA×÷AF¡ÎBC£¬½»BEµÄÑÓ³¤ÏßÓÚµãF£¬Í¨¹ý¹¹Ôì¡÷AEF£¬¾¹ýÍÆÀíºÍ¼ÆËãÄܹ»Ê¹ÎÊÌâµÃµ½½â¾ö£¨Èçͼ2£©£®
Çë»Ø´ð£º$\frac{AP}{PD}$µÄֵΪ$\frac{3}{2}$£®
²Î¿¼Ð¡ê»Ë¼¿¼ÎÊÌâµÄ·½·¨£¬½â¾öÎÊÌ⣺
Èçͼ 3£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬µãDÔÚBCµÄÑÓ³¤ÏßÉÏ£¬ADÓëAC±ßÉϵÄÖÐÏßBEµÄÑÓ³¤Ïß½»ÓÚµãP£¬DC£ºBC£ºAC=1£º2£º3£®
£¨1£©Çó$\frac{AP}{PD}$µÄÖµ£»
£¨2£©ÈôCD=2£¬ÔòBP=6£®
·ÖÎö Ò×Ö¤¡÷AEF¡Õ¡÷CEB£¬ÔòÓÐAF=BC£®ÉèCD=k£¬ÔòDB=2k£¬AF=BC=3k£¬ÓÉAF¡ÎBC¿ÉµÃ¡÷APF¡×¡÷DPB£¬È»ºó¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʾͿÉÇó³ö$\frac{AP}{PD}$µÄÖµ£»
½â¾öÎÊÌ⣺£¨1£©¹ýµãA×÷AF¡ÎDB£¬½»BEµÄÑÓ³¤ÏßÓÚµãF£¬ÉèDC=k£¬ÓÉDC£ºBC=1£º2µÃBC=2k£¬DB=DC+BC=3k£®Ò×Ö¤¡÷AEF¡Õ¡÷CEB£¬ÔòÓÐEF=BE£¬AF=BC=2k£®Ò×Ö¤¡÷AFP¡×¡÷DBP£¬È»ºó¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʾͿÉÇó³ö$\frac{AP}{PD}$µÄÖµ£»
£¨2£©µ±CD=2ʱ£¬¿ÉÒÀ´ÎÇó³öBC¡¢AC¡¢EC¡¢EB¡¢EF¡¢BFµÄÖµ£¬È»ºó¸ù¾Ý$\frac{FP}{BP}$µÄÖµÇó³ö$\frac{BF}{BP}$£¬¾Í¿ÉÇó³öBPµÄÖµ£®
½â´ð ½â£º$\frac{AP}{PD}$µÄֵΪ$\frac{3}{2}$£®
Ìáʾ£ºÒ×Ö¤¡÷AEF¡Õ¡÷CEB£¬ÔòÓÐAF=BC£®
ÉèCD=k£¬ÔòDB=2k£¬AF=BC=3k£¬
ÓÉAF¡ÎBC¿ÉµÃ¡÷APF¡×¡÷DPB£¬
¼´¿ÉµÃµ½$\frac{AP}{PD}$=$\frac{AF}{BD}$=$\frac{3}{2}$£®
¹Ê´ð°¸Îª£º$\frac{3}{2}$£»
½â¾öÎÊÌ⣺
£¨1£©¹ýµãA×÷AF¡ÎDB£¬½»BEµÄÑÓ³¤ÏßÓÚµãF£¬Èçͼ£¬
ÉèDC=k£¬
ÓÉDC£ºBC=1£º2µÃBC=2k£¬DB=DC+BC=3k£®
¡ßEÊÇACÖе㣬
¡àAE=CE£®
¡ßAF¡ÎDB£¬
¡à¡ÏF=¡Ï1£®
ÔÚ¡÷AEFºÍ¡÷CEBÖУ¬
$\left\{\begin{array}{l}{¡ÏF=¡Ï1}\\{¡Ï2=¡Ï3}\\{AE=CE}\end{array}\right.$£¬
¡à¡÷AEF¡Õ¡÷CEB£¬
¡àEF=BE£¬AF=BC=2k£®
¡ßAF¡ÎDB£¬
¡à¡÷AFP¡×¡÷DBP£¬
¡à$\frac{AP}{DP}$=$\frac{FP}{BP}$=$\frac{AF}{DB}$=$\frac{2k}{3k}$=$\frac{2}{3}$£®
¡à$\frac{AP}{PD}$µÄֵΪ$\frac{2}{3}$£»
£¨2£©µ±CD=2ʱ£¬BC=4£¬AC=6£¬
¡àEC=$\frac{1}{2}$AC=3£¬EB=$\sqrt{E{C}^{2}+B{C}^{2}}$=5£¬
¡àEF=BE=5£¬BF=10£®
¡ß$\frac{FP}{BP}$=$\frac{2}{3}$£¨ÒÑÖ¤£©£¬
¡à$\frac{BF}{BP}$=$\frac{5}{3}$£¬
¡àBP=$\frac{3}{5}$BF=$\frac{3}{5}$¡Á10=6£®
¹Ê´ð°¸Îª6£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬½áºÏÖе㣬×÷ƽÐÐÏß¹¹ÔìÈ«µÈÈý½ÇÐÎÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | x¡Ý2 | B£® | x£¾2 | C£® | x¡Ù2 | D£® | x£¼2 |