题目内容

17.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为(  )
A.15B.10C.$\frac{15}{2}$D.5

分析 首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为15,进而求出△ACD的面积.

解答 解:∵∠DAC=∠B,∠C=∠C,
∴△ACD∽△BCA,
∵AB=4,AD=2,
∴$\frac{{S}_{△ACD}}{{S}_{△ABC}}$=$\frac{{S}_{△ACD}}{{S}_{△ABD}{+S}_{△ACD}}$=$\frac{{S}_{△ACD}}{15{+S}_{△ACD}}$=($\frac{AD}{AB}$)2=$\frac{1}{4}$
∴△ACD的面积=5,
故选:D.

点评 本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型,解题关键是熟练掌握相似三角形的判定和性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网