题目内容
15.若约定:a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数.如:2的差倒数是$\frac{1}{1-2}$=-1,-1的差倒数是$\frac{1}{1-(-1)}$=$\frac{1}{2}$.已知a1=-$\frac{1}{3}$,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2013=4.分析 根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2013除以3,根据余数的情况确定出与a2013相同的数即可得解.
解答 解:∵a1=-$\frac{1}{3}$,
∴a2=$\frac{1}{1-(-\frac{1}{3})}$=$\frac{3}{4}$,
a3=$\frac{1}{1-\frac{3}{4}}$=4,
a4=$\frac{1}{1-4}$=-$\frac{1}{3}$,
…
2013÷3=671.
∴a2013与a3相同,为4.
故答案为:4.
点评 此题考查数字的变化规律,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.
练习册系列答案
相关题目