题目内容
若⊙O的直径为10,圆心O为坐标原点,点P的坐标为(4,3),则点P与⊙O的位置关系是( )
A. 点P在⊙O上 B. 点P在⊙O内 C. 点P在⊙O外 D. 以上都有可能
如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,AB的垂直平分线分别交AB、AC于点D、E,
(1)求AB的长度;
(2)求CE的长.
如图,∠A=∠D,∠1=∠2,添加下列条件,可使△ABC≌△DEF的是( )
A. AF=DF B. AB=DE C. AB=EF D. ∠B=∠E
如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为( )
A. (A) B. (B) C. (C) D. (D)
如图,晚上小亮在路灯下散步,他从处向着路灯灯柱方向径直走到处,这一过程中他在该路灯灯光下的影子( )
A. 逐渐变短 B. 逐渐变长 C. 先变短后变长 D. 先变长后变短
如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.
(1)若∠F=80º,则∠ABC+∠BCD= ;∠E= ;
(2)探索∠E与∠F有怎样的数量关系,并说明理由;
(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为 .
若一个多边形内角和等于1260°,则该多边形边数是______.
某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.
(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )
A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0