题目内容
如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,AB的垂直平分线分别交AB、AC于点D、E,
(1)求AB的长度;
(2)求CE的长.
我们设[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的若干结论:
①当m=-3时,该函数图象的顶点坐标是(,);
②当m=1时,该函数图象截x轴所得的线段的长度为2;
③当m=-1时,该函数在x>时,y随x的增大而减小;
④当m≠0时,该函数图象必经过x轴上的一个定点.
上述结论中正确的有_________________.(只需填写所有正确答案的序号)
如图,在中,,AE平分,,求:
的度数;
探究:小明认为如果条件,改成,也能得出的度数?若能,请你写出求解过程;若不能,请说明理由.
下列说法中,正确的有( )
①过两点有且只有一条直线;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④40°50′=40.5°;⑤不相交的两条直线叫做平行线.
A. 1个 B. 2个 C. 3个 D. 4个
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是( )
A. 两点确定一条直线 B. 过一点有无数条直线
C. 两点之间,线段最短 D. 连接两点之间的线段叫做两点之间的距离
已知直角三角形的两直角边a,b满足+(b﹣8)2=0,则斜边c上中线的长为_____.
的算术平方根是_____.
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.且AF=5,则DC=_____.
若⊙O的直径为10,圆心O为坐标原点,点P的坐标为(4,3),则点P与⊙O的位置关系是( )
A. 点P在⊙O上 B. 点P在⊙O内 C. 点P在⊙O外 D. 以上都有可能