题目内容
一张正方形纸的内部被针扎了2010个孔,这些孔和正方形的顶点之中的任何3点都不共线.作若干条互不相交的线段,它们的端点都是这些孔或正方形的顶点,这些线段将正方形分割成一些三角形,并且在这些三角形的内部和边上都不再有小孔.请问一共作了多少条线段?共得到了多少个三角形?
考点:立体图形
专题:
分析:利用三角形的内角和解决问题,根据题意可得出正方形的每个顶点都提供90°的角,每个孔点则提供360°的角,从而可得出所有三角形的内角和表达式,从而设共分成了n个三角形,于是它们的内角和为n•180°,联立可得出n的值,也可得出所作的线段数.
解答:解:把2010个小孔和正方形的4个顶点所组成的集合称之为M,显然,M中的点都是一些三角形的公共顶点,
下面我们从两个方面来计算所有三角形的内角和,
①设共分成了n个三角形,于是它们的内角和为n•180°,
②另一方面,这些三角形的内角的顶点都是M中的点,也即它们的内角都是由M中的点提供的,正方形的每个顶点都提供90°的角,每个孔点则提供360°的角,
所以得到的n个三角形的内角和又应为:4×90°+2010×360°=2011×360°,
综合两个方面可得n•180°=2011×360°,则n=4022,即有4022个三角形.
这4022个三角形共有4022×3条边,
其中有4条边是原正方形的4条边,不用另行作出,其他各边都是作出的线段,每条线段恰为两个三角形的公共边,故作出的线段总数为(4022×3-4)÷2=6031.
综上所述可得一共作了6031条线段,共得到4022个三角形.
下面我们从两个方面来计算所有三角形的内角和,
①设共分成了n个三角形,于是它们的内角和为n•180°,
②另一方面,这些三角形的内角的顶点都是M中的点,也即它们的内角都是由M中的点提供的,正方形的每个顶点都提供90°的角,每个孔点则提供360°的角,
所以得到的n个三角形的内角和又应为:4×90°+2010×360°=2011×360°,
综合两个方面可得n•180°=2011×360°,则n=4022,即有4022个三角形.
这4022个三角形共有4022×3条边,
其中有4条边是原正方形的4条边,不用另行作出,其他各边都是作出的线段,每条线段恰为两个三角形的公共边,故作出的线段总数为(4022×3-4)÷2=6031.
综上所述可得一共作了6031条线段,共得到4022个三角形.
点评:此题考查了立体图形的知识,解答本题的关键是得出在组成三角形的过程中,正方形的每个顶点都提供90°的角,每个孔点则提供360°的角,从而根据三角形的内角和得出方程,难度较大.
练习册系列答案
相关题目
在平行四边形ABCD中,下列结论中正确的是( )
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
在277,355,544,633这四个数中,最大的数是( )
| A、277 |
| B、355 |
| C、544 |
| D、633 |