题目内容

如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到0.1cm)
(参考数据:sin15°≈0.259,cos15°≈0.966,tan15°≈0.268,
2
≈1.414)
考点:解直角三角形的应用
专题:
分析:过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO•sin15°,AD=AO•cos15°,在Rt△BDO中根据∠OBC=45°可知BD=OD,再根据AB=AD+BD即可得出结论.
解答:解:过O点作OD⊥AB交AB于D点.
在Rt△ADO中,
∵∠A=15°,AO=30,
∴OD=AO•sin15°=30×0.259=7.77(cm) 
AD=AO•cos15°=30×0.966=28.98(cm)
又∵在Rt△BDO中,∠OBC=45°,
∴BD=OD=7.77(cm),
∴AB=AD+BD=36.75≈36.8(cm).
答:AB的长度为36.8cm.
点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网