题目内容

如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为(  )
A、20cm
B、15cm
C、10cm
D、随直线MN的变化而变化
考点:切线长定理
专题:
分析:利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.
解答:解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,
∴设E、F分别是⊙O的切点,
故DM=MF,FN=EN,AD=AE,
∴AM+AN+MN=AD+AE=10+10=20(cm).
故选:A.
点评:此题主要考查了切线长定理,得出AM+AN+MN=AD+AE是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网