题目内容

如图,在直角坐标系中,点O为坐标原点.已知反比例函数y=
k
x
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为
1
2

(1)求k和m的值;
(2)当1≤x≤3时,求函数值y的取值范围;
(3)过原点O的直线l与反比例函数y=
k
x
的图象交于P,Q两点,试根据图象直接写出线段PQ长度的最小值.
考点:反比例函数与一次函数的交点问题
专题:
分析:(1)根据三角形的面积公式先得到m的值,然后把点A的坐标代入y=
k
x
,可求出k的值;
(2)先分别求出x=1和3时,y的值,再根据反比例函数的性质求解;
(3)当P、Q是反比例函数与y=x的交点时,PQ长度最小,据此即可求解.
解答:解:(1)∵A(2,m),
∴OB=2,AB=m,
∴S△AOB=
1
2
•OB•AB=
1
2
×2×m=
1
2

∴m=
1
2

∴点A的坐标为(2,
1
2
),
把A(2,
1
2
)代入y=
k
x
,得
1
2
=
k
2

∴k=1;
(2)∵当x=1时,y=1;当x=3时,y=
1
3

又∵反比例函数y=
1
x
在x>0时,y随x的增大而减小,
∴当1≤x≤3时,y的取值范围为
1
3
≤y≤1;
(3)在y=
1
x
中,当x=y时,解得:x=y=1,
则P、Q的坐标是(1,1)和(-1,-1),则PQ=
22+22
=2
2
点评:本题考查了反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质,三角形的面积公式以及代数式的变形能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网