题目内容

如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3
表示正方形ABCD的面积S.

解:(1)证明:在Rt△AFD和Rt△CEB中,
∵AD=BC,AF=CE,∴Rt△AFD≌Rt△CEB(HL)。
(2)∵∠ABH+∠CBE=90°,∠ABH+∠BAH=90°,∴∠CBE=∠BAH。
又∵AB=BC,∠AHB=∠CEB=90°,∴△ABH≌△BCE(AAS)。
同理可得,△ABH≌△BCE≌△CDG≌△DAF。
∴S正方形ABCD=4SABH+S正方形HEGF=4××2×1+1+1=5。
(3)由(1)知,△AFD≌△CEB,故h1=h3
由(2)知,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4SABH+S正方形HEGF=4×(h1+h2)•h1+h22=2h12+2h1h2+h22

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网