题目内容

16.如图1,线段AB=60厘米.
(1)点P沿线段AB自A点向B点以4厘米/分的速度运动,同时点Q沿直线自B点向A点以6厘米/分的速度运动,几分钟后,P、Q两点相遇?
(2)几分钟后,P、Q两点相距20厘米?
(3)如图2,AO=PO=8厘米,∠POB=40°,现将点P绕着点O以20度/分的速度顺时针旋转一周后停止,同时点Q沿直线BA沿B点向A点运动,假若P、Q两点也能相遇,求点Q的速度.

分析 (1)由路程=速度×时间,结合题意列出方程,解方程即可得出结论;
(2)由路程=速度×时间,结合题意列出方程,解方程即可得出结论;
(3)若P、Q两点相遇,则相遇时点P在直线上,由P点的旋转速度可找出当P在直线上时的时间,再由路程=速度×时间,列出一元一次方程,解方程即可得出结论.

解答 解:(1)设经过x分钟后,P、Q两点相遇,依题意得:
4x+6x=60,解得:x=6.
答:经过6分钟后,P、Q两点相遇.
(2)设经过y分钟后,P、Q两点相距20厘米,依题意得:
①4y+6y+20=60,解得:y=4;
②4y+6y-20=60,解得:y=8.
答:经过4或8分钟后,P、Q两点相距20厘米.
(3)由题意知,点P、Q只能在直线AB上相遇,则点P旋转到直线上的时间为2分钟或11分钟.
设点Q的速度为t厘米/分,依题意得:
①2t=60-16,解得:t=22;
②11t=60,解得:t=$\frac{60}{11}$.
答:点Q的速度为22厘米/分或$\frac{60}{11}$厘米/分.

点评 本题考查了一元一次方程的应用,解题的关键是结合路程=速度×时间与题意,列出一元一次方程.本题属于基础题,难度不大,解决该类问题时,理清各数量之间的关系式关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网