题目内容

10.如图,有一块直角三角形纸片ABC,∠C=90°.两直角边AC=6cm,BC=8cm,现将该纸片沿直线AD折叠,使点C落在斜边AB上的点E处,则折痕AD=3$\sqrt{5}$cm.

分析 先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长,然后根据勾股定理即可求得AD.

解答 解:∵AC=6cm,BC=8cm,∠C=90°
∴AB=10cm,
∵AE=6cm(折叠的性质),
∴BE=4cm,
设CD=x,
则在Rt△DEB中,
42+x2=(8-x)2
∴x=3cm.
∴CD=3cm,
在Rt△ACD中,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=3$\sqrt{5}$cm.
故答案为3$\sqrt{5}$.

点评 本题考查了翻折变换的性质,勾股定理的应用,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网