题目内容

如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.
(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是
 
,并证明.
(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.
考点:全等三角形的判定与性质,矩形的判定
专题:几何综合题,分类讨论
分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,
(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.
解答:(1)答:添加:EH=FH,
证明:∵点H是BC的中点,
∴BH=CH,
在△BEH和△CFH中,
BH=CH
∠BHE=∠CHF
EH=FH

∴△BEH≌△CFH(SAS);

(2)解:∵BH=CH,EH=FH,
∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),
∵当BH=EH时,则BC=EF,
∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).
点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网