题目内容
考点:三角形的角平分线、中线和高,三角形内角和定理
专题:
分析:△ABC中已知∠B=40°,∠C=60°,根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠BAD,根据三角形外角的性质求出∠ADE,则∠DAE=90°-∠ADE.
解答:解:∵∠B=40°,∠C=60°,
∴∠BAC=180°-∠B-∠C=80°.
∵AD是△ABC的角平分线,
∴∠BAD=∠DAC=
∠BAC=40°,
∴∠ADE=∠B+∠BAD=80°,
∴∠DAE=90°-∠ADE=90°-80°=10°.
∴∠BAC=180°-∠B-∠C=80°.
∵AD是△ABC的角平分线,
∴∠BAD=∠DAC=
| 1 |
| 2 |
∴∠ADE=∠B+∠BAD=80°,
∴∠DAE=90°-∠ADE=90°-80°=10°.
点评:本题考查的是三角形的角平分线和高的定义,三角形内角和定理,三角形外角的性质,熟知三角形的内角和是180°是解答此题的关键.
练习册系列答案
相关题目
2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为( )
| A、0.38×106 |
| B、0.38×105 |
| C、3.8×104 |
| D、3.8×105 |
| A、4 | ||
B、
| ||
C、4-
| ||
D、8-
|
下列图形对称轴最多的是( )
| A、正方形 | B、等边三角形 |
| C、等腰三角形 | D、线段 |