题目内容

3.如图,⊙O的直径CD=12cm,AB是⊙O的弦,AB⊥CD,垂足为E,OE:OC=1:3,则AB的长为(  )
A.2$\sqrt{2}$cmB.4$\sqrt{2}$cmC.6$\sqrt{2}$cmD.8$\sqrt{2}$cm

分析 先求出OE再利用勾股定理即可的得出AE,最后用垂径定理即可得出AB.

解答 解:如图,

连接OA,
∵⊙O的直径CD=12cm,
∴OD=OA=OC=6,
∵OE:OC=1:3,
∴OE=2,
∵AB⊥CD,
∴AB=2AE,∠OEA=90°,
在Rt△OAE中,AE=$\sqrt{O{A}^{2}-O{E}^{2}}$=$\sqrt{36-4}$=4$\sqrt{2}$,
∴AB=2AE=8$\sqrt{2}$cm.
故选D.

点评 本题考查了垂径定理、勾股定理.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网