题目内容

已知:如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.求证:CD是⊙O的切线.
考点:切线的判定
专题:证明题
分析:连结OD,由OC∥AD得到∠BOC=∠A,而∠ODA=∠A,则∠ODA=∠BOC,由于∠BOC+∠ADF=90°,所以∠ODA+∠ADF=90°,然后根据切线的判定定理得到结论.
解答:证明:连结OD,如图,
∵OC∥AD,
∴∠BOC=∠A,
而OD=OA,
∴∠ODA=∠A,
∴∠ODA=∠BOC,
∵∠BOC+∠ADF=90°,
∴∠ODA+∠ADF=90°,
即∠ODF=90°,
∴OD⊥DF,
∴CD是⊙O的切线.
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网