题目内容
【题目】已知四边形ABCD和四边形CEFG都是正方形,且AB>CE
![]()
(1) 如图1,连接BG、DE,求证:BG=DE
(2) 如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD
① 求∠BDE的度数
② 若正方形ABCD的边长是
,请直接写出正方形CEFG的边长____________
【答案】(1)见解析;(2)①∠BDE=60°;②
1.
【解析】
(1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;
(2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;
②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=
BD,由勾股定理就可以求出EH的值,从而求出结论.
(1)证明:∵四边形ABCD和CEFG为正方形,
∴BC=DC,CG=CE,∠BCD=∠GCE=90°.
∴∠BCD+∠DCG=∠GCE+∠DCG,
∴∠BCG=∠DCE.
在△BCG和△DCE中,
,
∴△BCG≌△DCE(SAS).
∴BG=DE;
(2)①连接BE.
![]()
由(1)可知:BG=DE.
∵CG∥BD,
∴∠DCG=∠BDC=45°.
∴∠BCG=∠BCD+∠GCD=90°+45°=135°.
∵∠GCE=90°,
∴∠BCE=360°∠BCG∠GCE=360°135°90°=135°.
∴∠BCG=∠BCE.
∵BC=BC,CG=CE,
在△BCG和△BCE中,
,
∴△BCG≌△BCE(SAS).
∴BG=BE.
∵BG=BD=DE,
∴BD=BE=DE.
∴△BDE为等边三角形。
∴∠BDE=60°.
②延长EC交BD于点H,
在△BCE和△DCE中,
,
∴△BCE≌△BCG(SSS),
∴∠BEC=∠DEC,
∴EH⊥BD,BH=
BD.
∵BC=CD=
,在Rt△BCD中由勾股定理,得
∴BD=
2.
∴BH=1.
∴CH=1.
在Rt△BHE中,由勾股定理,得
EH=
,
∴CE=
1.
∴正方形CEFG的边长为
1.