题目内容

4.为美化市容,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A,B两种园艺造型共50个,摆放在文庙广场,搭配每个造型所需花卉情况如表,解答问题:
 造型
 A90盆30盆
 B40盆100盆
(1)符合题意的搭配方案有哪几种?
(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用哪种方案成本最低?

分析 (1)设需要搭配x个A种造型,则需要搭配B种造型(50-x)个,根据“3600盆甲种花卉”“2900盆乙种花卉”列不等式组求解,取整数值即可;
(2)通过计算比较得出那种方案成本最低.

解答 解:(1)设需要搭配x个A种造型,则需要搭配B种造型(50-x)个,
则有$\left\{\begin{array}{l}{90x+40(50-x)≤3600}\\{30x+100(50-x)≤2900}\end{array}\right.$,
解得:30≤x≤32,
所以x=30或31或32.
第一方案:A种造型32个,B种造型18个;
第二种方案:A种造型31个,B种造型19个;
第三种方案:A种造型30个,B种造型20个.

(2)分别计算三种方案的成本为:
32×1000+18×1200=53600,
31×1000+19×1200=53800,
30×1000+20×1200=54000,
通过比较可知第一种方案成本最低.

点评 此题考查一元一次不等式组的实际运用,找出题目蕴含的不等关系是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网