题目内容

【题目】如图平面直角坐标系中ABC为等边三角形其中点A,B,C的坐标分别为(-3,-1),(-3,-3),(-3+,-2).现以y轴为对称轴作ABC的对称图形A1B1C1再以x轴为对称轴作A1B1C1的对称图形A2B2C2.

(1)直接写出点C1,C2的坐标

(2)能否通过一次旋转将ABC旋转到A2B2C2的位置?若能请直接写出所旋转的度数;若不能请说明理由

(3)设当ABC的位置发生变化时A2B2C2A1B1C1ABC之间的对称关系始终保持不变

①当ABC向上平移多少个单位长度时A1B1C1A2B2C2完全重合?并直接写出此时点C的坐标;

②将ABC绕点A顺时针旋转α°(0≤α≤180),使A1B1C1A2B2C2完全重合此时α的值为多少?点C的坐标又是什么?

【答案】(1)点C1,C2的坐标分别为(3-,-2),(3-,2);(2)能,旋转的度数为180°;(3)①当ABC向上平移2个单位长度,C的坐标为(-3+,0);②当α=180时,A1B1C1A2B2C2完全重合,此时点C的坐标为(-3-,0)

【解析】

(1)根据关于坐标轴对称点的坐标的特点即可解答;(2)观察图象,根据旋转的性质可知:旋转的度数为180°能通过一次旋转将△ABC旋转到△A2B2C2的位置;(3)①根据图形和平移的性质可知当△ABC向上平移2个单位时,△A1B1C1与△A2B2C2完全重合,此时点C的坐标为(-3+ ,0);②利用旋转的性质可知当α=180时,△A1B1C1与△A2B2C2完全重合,此时点C的坐标为(-3-,0).

(1)C1,C2的坐标分别为(3-,-2),(3-,2).

(2)能通过一次旋转将ABC旋转到A2B2C2的位置,所旋转的度数为180°.

(3)①当ABC向上平移2个单位长度时,A1B1C1A2B2C2完全重合,此时点C的坐标为(-3+,0)(如图1);

②当α=180时,A1B1C1A2B2C2完全重合,此时点C的坐标为(-3-,0)(如图2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网