题目内容
下列一元二次方程没有实数根的是( )
A. x2+x+2=0 B. x2+2x+1=0 C. x2﹣1=0 D. x2﹣2x﹣1=0
在平面直角坐标系中,函数的图象与x标轴交于A(-3,0),B(1,0)两点,与轴交于点C。
(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E。是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;
(4)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由。
如图,在平行四边形中,下列结论中错误的是( )
A. B. C. D.
如图,在正六边形ABCDEF中,连接AD,AE,则∠DAE=__________________度.
如图,以AB为直径的半圆绕A点,逆时针旋转60o,点B旋转到点B’的位置,已知AB=6,则图中阴影部分的面积为( )
A. 6 B. 5 C. 4 D. 3
如图,P是等边△ABC的AB边上一点,过P作PE⊥AC于E,在BC的延长线上截取CQ=AP,连接PQ交AC于点D.
(1)若∠Q=28°,求∠EPD的度数;
(2)求证:PD=QD.
如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
证明:(1)CF=EB.
(2)AB=AF+2EB.
如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠A4=( )
A. 10° B. 15° C. 30° D. 40°
如图,点A为反比例函数y=-图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为( )
A. -4 B. 4 C. -2 D. 2