题目内容
考点:二次函数综合题
专题:
分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.
解答:
解:连接AC,BC,
∵抛物线的解析式为y=x2-2x-3,
∴点D的坐标为(0,-3),
∴OD的长为3,
设y=0,则0=x2-2x-3,
解得:x=-1或3,
∴A(-1,0),B(3,0)
∴AO=1,BO=3,
∵AB为半圆的直径,
∴∠ACB=90°,
∵CO⊥AB,
∴CO2=AO•BO=3,
∴CO=
,
∴CD=CO+OD=3+
,
故答案为:3+
.
∵抛物线的解析式为y=x2-2x-3,
∴点D的坐标为(0,-3),
∴OD的长为3,
设y=0,则0=x2-2x-3,
解得:x=-1或3,
∴A(-1,0),B(3,0)
∴AO=1,BO=3,
∵AB为半圆的直径,
∴∠ACB=90°,
∵CO⊥AB,
∴CO2=AO•BO=3,
∴CO=
| 3 |
∴CD=CO+OD=3+
| 3 |
故答案为:3+
| 3 |
点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.
练习册系列答案
相关题目
| A、25° | B、30° |
| C、35° | D、40° |