题目内容

已知实数x,y满足|x-4|+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是
 
考点:等腰三角形的性质,非负数的性质:绝对值,非负数的性质:偶次方
专题:
分析:先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.
解答:解:根据题意得,x-4=0,y-8=0,
解得x=4,y=8,
①4是腰长时,三角形的三边分别为4、4、8,
∵4+4=8,
∴不能组成三角形,
②4是底边时,三角形的三边分别为4、8、8,
能组成三角形,周长=4+8+8=20,
所以,三角形的周长为20.
故答案为:20;
点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网