题目内容
如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56’,那么∠BOC为 .
如图,A,B,C为⊙O上三点,若∠OAB=50°,则∠ACB= 度.
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).
(1)小明的这三件文具中,可以看做是轴对称图形的是 (填字母代号);
(2)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?
若二次函数y=2x2的图象经过点P(1,a),则a的值为( )
A. B.1 C.2 D.4
计算已知a=()2,b=﹣,c=﹣|﹣4|,d=1﹣(﹣),e=,请你列式表示上述5个数中“无理数的和”与“有理数的积”的差,并计算结果.
已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
在平面直角坐标系xOy中,已知抛物线y=﹣+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=.
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若=时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由.
已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是( )
A.y≥3 B.y≤3 C.y>3 D.y<3
已知关于x的方程x2﹣3x+a2+2a﹣7=0的一个根是4,求方程的另一个根和a的值.