题目内容

4.如图,四边形ABCD、AEFG是正方形,点E、G分别在AB、AD上,连接FC,过点E作EH∥FC,交BC于点H,若AB=4,AE=1,则BH=3.

分析 求出BE的长,再根据两组对边分别平行的四边形是平行四边形求出四边形EFCH平行四边形,根据平行四边形的对边相等可得EF=CH,再根据正方形的性质可得AB=BC,AE=EF,然后求出BH=BE即可得解.

解答 解:∵AB=4,AE=1,
∴BE=AB-AE=4-1=3,
∵四边形ABCD,AEFG都是正方形,
∴AD∥EF∥BC,
又∵EH∥FC,
∴四边形EFCH平行四边形,
∴EF=CH,
∵四边形ABCD,AEFG都是正方形,
∴AB=BC,AE=EF,
∴AB-AE=BC-CH,
∴BE=BH=3.
故答案为:3.

点评 本题考查了正方形的性质,平行四边形的判定与性质,熟记性质并求出四边形EFCH平行四边形是解题的关键,也是本题的难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网