题目内容
已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.
【答案】(1)当k≤
时,原方程有两个实数根(2)不存在实数k,使得x1·x2-x12-x22≥0成立
【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.
试题解析:
(1)
,解得![]()
(2)由
,
由根与系数的关系可得: ![]()
代入得:
,
化简得:
,
得
.
由于
的取值范围为
,
故不存在k使
。
【题型】解答题
【结束】
13
如图,在平面直角坐标系中,已知四边形ABCD为菱形,且
(0,3)、
(﹣4,0).
(1)求经过点
的反比例函数的解析式;
(2)设
是(1)中所求函数图象上一点,以
顶点的三角形的面积与△COD的面积相等.求点P的坐标.
![]()
练习册系列答案
相关题目