题目内容

如图,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设BE=x(0<x<2),阴影部分面积为y,则y与x之间的函数图象为( )

A. B. C. D.

C 【解析】 试题分析:阴影部分的面积=阴影部分的面积=△EFP的面积+△GHP的面积 ∵AE=x, ∴阴影部分的面积=x•x+×(2﹣x)•(2﹣x)=x2﹣2x+2=(x﹣1)2+1 (0<x<2), 它的图象为C. 故选C.
练习册系列答案
相关题目

已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.

(1)求实数k的取值范围;

(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.

【答案】(1)当k≤时,原方程有两个实数根(2)不存在实数k,使得x1·x2-x12-x22≥0成立

【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.

试题解析:

(1) ,解得

(2)由

由根与系数的关系可得:

代入得:

化简得:

.

由于的取值范围为

故不存在k使

【题型】解答题
【结束】
13

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且(0,3)、(﹣4,0).

(1)求经过点的反比例函数的解析式;

(2)设是(1)中所求函数图象上一点,以顶点的三角形的面积与△COD的面积相等.求点P的坐标.

(1);(2)P(, )或(-,-). 【解析】试题分析:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况. (1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式; (2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标. 试题解析...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网