题目内容
已知:如图所示,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
求证:CF=EB.
![]()
证明见解析.
【解析】
试题分析:根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即DE=CD,再根据HL证明Rt△CDF≌Rt△EBD,从而得出CF=EB.
试题解析:∵AD是∠BAC的平分线,DE⊥AB于E,DC⊥AC于C,
∴DE=DC.
又∵BD=DF,
∴Rt△CDF≌Rt△EDB,
∴CF=EB.
考点:1.全等三角形的判定与性质;2.角平分线的性质.
练习册系列答案
相关题目
(12分)长岭中心中学九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x | |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.