题目内容

(12分)长岭中心中学九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

时间x(天)

1≤x<50

50≤x≤90

售价(元/件)

x+40

90

每天销量(件)

200﹣2x

已知该商品的进价为每件30元,设销售该商品的每天利润为y元.

(1)求出y与x的函数关系式;

(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

(1)y=

(2)该商品第45天时,当天销售利润最大,最大利润是6050元;

(3)当20≤x≤60天时,即这41天每天销售利润不低于4800元.

【解析】

试题分析:(1)根据单价乘以数量,可得利润,可得答案;

(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;

(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.

试题解析:【解析】
(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+200,

当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,

综上所述:y=

(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,

当x=45时,y最大=﹣2×452+180×45+2000=6050,

当50≤x≤90时,y随x的增大而减小,

当x=50时,y最大=6000,

综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;

(3)当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤70,

因此利润不低于4800元的天数是20≤x<50,共30天;

当50≤x≤90时,y=-120x+12000≥4800,解得x≤60,

因此利润不低于4800元的天数是50≤x≤60,共11天,

所以当20≤x≤60天时,即这41天每天销售利润不低于4800元.

考点:函数应用题;求最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网