题目内容

已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P点,D、E分别在线段BA、BC上.若∠B=60°,且AD=BE,BD=CE,求∠APD的度数.
考点:全等三角形的判定与性质
专题:
分析:连结AC,由条件可以得出△ABC为等边三角形,再由等边三角形的性质就可以得出△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;
解答:解:连结AC,
∵AD=BE,BD=CE,
∴AD+BD=BE+CE,
∴AB=BC.
∵∠B=60°,
∴△ABC为等边三角形.
∴∠B=∠ACB=60°,BC=AC.
在△CBD和△ACE中
BC=AC
∠B=∠ACB
BD=CE

∴△CBD≌△ACE(SAS),
∴∠BCD=∠CAE.
∵∠APD=∠CAE+∠ACD,
∴∠APD=∠BCD+∠ACD=60°.
点评:此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网