已知,则(a-b) ²的值是( )

A. 1 B. 4 C. 16 D. 9

A 【解析】试题解析:∵a+b=-3,ab=2, ∴(a-b)2=a2+b2-2ab, =a2+b2+2ab-4ab, =(a+b)2-4ab, =(-3)2-4×2, =9-8, =1. 故选A.

已知二次函数y=x2+2x+c的图象经过点(1,-5).

(1)求c的值;

(2)求函数图象与x轴的交点坐标.

(1)8;(2)(-4,0),(2,0) 【解析】试题分析:(1)二次函数解析式只有一个待定系数c,把点(1,-5)代入解析式即可求c; (2)已知二次函数解析式求函数图象与x轴的交点坐标,令y=0,解一元二次方程,可得交点的横坐标. 试题分析:(1)∵点(1,-5)在y=x2+2x+c的图象上, ∴-5=1+2+c, ∴c= -8; (2)令y=0,则x2+2...

若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为(  )

A. x1<x2<a<b B. x1<a<x2<b

C. x1<a<b<x2 D. a<x1<b<x2

C 【解析】试题分析:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,随便画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x﹣a)(x﹣b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2. 故选:C.

因式分【解析】

(1)20a3﹣30a2

(2)16﹣(2a+3b)2

(3)﹣16x2y2+12xy3z

(4)5x2y﹣25x2y2+40x3y

(5)x2(a﹣b)2﹣y2(b﹣a)2

(6)(a2+b2)2﹣4a2b2

(7)18b(a﹣b)2+12(b﹣a)3

(8)x(x2+1)2﹣4x3

(9)(x2﹣2x)2﹣3(x2﹣2x)

(10)(2x﹣1)2﹣6(2x﹣1)+9

(11)16x4﹣72x2y2+81y4

(12)a5﹣a

(13)25(x+y)2﹣9(x﹣y)2

(14)m2﹣3m﹣28

(15)x2+x﹣20.

(1)10a2(2a﹣3);(2)(4+2a+3b)(4﹣2a﹣3b); (3)﹣4xy2(4x﹣3yz); (4)5x2y(1﹣5y+8x); (5)(a﹣b)2(x+y)(x﹣y); (6)(a+b)2(a﹣b)2; (7)6(b﹣a)2(5b﹣2a); (8)x(x+1)2(x﹣1)2; (9)x(x﹣2)(x﹣3)(x+1); (10)4(x...

下列各式中,不含因式a+1的是(  )

A. 2a2+2a B. a2+2a+1 C. a2﹣1 D.

D 【解析】A. 2a2+2a=2a(a+1) ,故不符合题意; B. a2+2a+1=(a+1)2 ,故不符合题意; C. a2﹣1=(a+1)(a-1) ,故不符合题意; D. =(a+)2,故符合题意; 故选D.

圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.

圆、长方形、正方形的对称轴的数量分别是无数条、2条、4条 【解析】试题分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是这个轴对称图形的对称轴,据此即可解答. 试题解析:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分 ∴过圆心的直线,都是圆的对称轴, ∴圆有无数条...

角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有( )

A. 4个 B. 5个 C. 6个 D. 3个

B 【解析】通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形, 故选:B.

如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.

3 【解析】 试题分析:根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系 最小值. 设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2, 则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+108. ∵4>0 ∴当t=3s时,S取得最小值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网