ÌâÄ¿ÄÚÈÝ
17£®Éú»îÖУ¬ÓÐÈËϲ»¶°ÑÁôÑÔ±ãÌõÕÛ³ÉÈçͼ¢ÜµÄÐÎ×´£¬ÕÛµþ¹ý³ÌÒÀͼ¢ÙÖÁͼ¢ÜµÄ˳ÐòËùʾ£¨ÒõÓ°²¿·Ö±íʾֽÌõµÄ·´Ã棩£®Èç¹ûͼ¢ÙÖеÄÖ½Ìõ³¤Îª26cm£¬¿íΪxcm£®·Ö±ð»Ø´ðÏÂÁÐÎÊÌ⣺£¨¢ñ£©¹Û²ìÕû¸öÕÛµþµÄ¹ý³Ì£¬ÆäÖÐͼ¢ÚÖеġÏAMBµÄ¶ÈÊýӦΪ90¡ã£»
£¨¢ò£©ÎªÁ˱£Ö¤ÄÜÕÛ³Éͼ¢ÜµÄÐÎ×´£¨¼´Ö½ÌõÁ½¶Ë¾ù³¬³öµãP£©£¬ÊÔÇóxµÄȡֵ·¶Î§£»
£¨¢ó£©Èç¹û²»µ«ÒªÕÛ³Éͼ¢ÜµÄÐÎ×´£¬¶øÇÒΪÁËÃÀ¹Û£¬Ï£ÍûÖ½ÌõÁ½¶Ë³¬³öµãPµÄ³¤¶ÈÏàµÈ£¬¼´×îÖÕͼÐÎÊÇÖá¶Ô³ÆÍ¼ÐΣ¬ÊÔÇóÔÚ¿ªÊ¼ÕÛµþʱÆðµãMÓëµãAµÄ¾àÀ루ÓÃx±íʾ£©£®
·ÖÎö £¨1£©¸ù¾ÝÕÛµþµÄ·½·¨¿ÉÖª¡ÏAMBµÄ¶ÈÊý£»
£¨2£©°´Í¼Öз½Ê½ÕÛµþºó¿ÉµÃµ½³ýÈ¥Á½¶Ë£¬Ö½ÌõʹÓõij¤¶ÈΪ5x£¬ÄÇôֽÌõʹÓõij¤¶ÈÓ¦´óÓÚ0£¬Ð¡ÓÚÖ½Ìõ×ܳ¤¶È£®
£¨3£©¸ù¾Ýͼ¢ÜÊÇÖá¶Ô³ÆÍ¼ÐΣ¬ÄÇôAM=AP+PM=AP+Ö½Ìõ¿íx£®
½â´ð ½â£º£¨1£©¸ù¾ÝÕÛµþµÄ·½·¨¿ÉÖª¡ÏAMB=90¡ã£¬
¹Ê´ð°¸Îª£º90¡ã£»
£¨2£©ÓÉÕÛÖ½¹ý³Ì¿ÉÖª0£¼5x£¼26£¬
¡à0£¼x£¼$\frac{26}{5}$£®
£¨3£©¡ßͼ¢ÜΪÖá¶Ô³ÆÍ¼ÐΣ¬
¡àAM=AP+x=$\frac{26-5x}{2}$+x=13-$\frac{3}{2}$x£¬
¼´µãMÓëµãAµÄ¾àÀëÊÇ£¨13-$\frac{3}{2}$x£©cm£®
µãÆÀ ±¾Ì⿼²éѧÉúµÄ¶¯ÊÖ²Ù×÷ÄÜÁ¦£¬ÊìÖªÕÛµþµÄÐÔÖÊÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÄѵãÊǵõ½Ö½Ìõ³ýÈ¥Á½¶ËʹÓõÄÖ½ÌõµÄ³¤¶È£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÔÚÏÂÁÐʵÊý£º$\frac{1}{3}$£¬$\sqrt{2}$£¬$-\sqrt{3}$£¬¦Ð£¬3.14ÖÐÈÎȡһ¸ö£¬È¡µ½ÓÐÀíÊýµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{5}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{3}{5}$ | D£® | $\frac{4}{5}$ |
9£®ÒªÊ¹·Öʽ$\frac{x+2}{x-1}$ÓÐÒâÒ壬ÔòxµÄȡֵӦÂú×㣨¡¡¡¡£©
| A£® | x¡Ù-2 | B£® | x¡Ù1 | C£® | x=-2 | D£® | x=1 |
7£®ÏÂÁÐÔËË㣺£¨1£©2x3-x2=x£»£¨2£©x3•£¨x5£©2=x13£»£¨3£©£¨-x£©6¡Â£¨-x£©3=x3£»£¨4£©£¨-2x3y£©2=4x6y2£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | £¨1£©£¨2£© | B£® | £¨2£©£¨4£© | C£® | £¨2£©£¨3£© | D£® | £¨3£©£¨4£© |