题目内容


如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是(  )

A.3       B.    C.    D.4

 


B【考点】切线的性质;三角形的面积.

【专题】计算题;压轴题.

【分析】当射线AD与⊙C相切时,△ABE面积的最大.设EF=x,由切割线定理表示出DE,可证明△CDE∽△AOE,根据相似三角形的性质可求得x,然后求得△ABE面积.

【解答】解:当射线AD与⊙C相切时,△ABE面积的最大.

连接AC,

∵∠AOC=∠ADC=90°,AC=AC,OC=CD,

∴Rt△AOC≌Rt△ADC,

∴AD=AO=2,

连接CD,设EF=x,

∴DE2=EF•OE,

∵CF=1,

∴DE=

∴△CDE∽△AOE,

=

=

解得x=

SABE===

故选:B.

【点评】本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD与⊙C相切时,△ABE面积的最大.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网