题目内容
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
考点:全等三角形的判定与性质
专题:证明题
分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答;
(2)通过证△ACD≌△ECD来推知DA=DE.
(2)通过证△ACD≌△ECD来推知DA=DE.
解答:(1)解:如图,∵在Rt△ABC中,∠ACB=90°,∠B=30°,
∴∠B=30°,
∴∠CAB=60°.
又∵AD平分∠CAB,
∴∠CAD=
∠CAB=30°,即∠CAD=30°;
(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,
∴∠ECD=90°,
∴∠ACD=∠ECD.
在△ACD与△ECD中,
,
∴△ACD≌△ECD(SAS),
∴DA=DE.
∴∠B=30°,
∴∠CAB=60°.
又∵AD平分∠CAB,
∴∠CAD=
| 1 |
| 2 |
(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,
∴∠ECD=90°,
∴∠ACD=∠ECD.
在△ACD与△ECD中,
|
∴△ACD≌△ECD(SAS),
∴DA=DE.
点评:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
练习册系列答案
相关题目
抛物线y=-x2-6x-11的顶点坐标是( )
| A、(3,2) |
| B、(3,-2) |
| C、(-2,2) |
| D、(-3,-2) |