ÌâÄ¿ÄÚÈÝ
13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªA£¨-6£¬1£©¡¢B£¨-3£¬1£©¡¢C£¨-3£¬3£©£¨1£©½«Rt¡÷ABCÑØxÖáÕý·½ÏòÆ½ÒÆ5¸öµ¥Î»µÃµ½Rt¡÷A1B1C1£¬ÊÔÔÚͼÉÏ»³öRt¡÷A1B1C1£¬²¢Ö±½Óд³öµãA1µÄ×ø±êΪ£¨-1£¬1£©£»
£¨2£©½«ÔÀ´µÄRt¡÷ABCÈÆµãB˳ʱÕëÐýת90¡ãµÃµ½Rt¡÷A2BC2£¬ÊÔÔÚͼÉÏ»³öRt¡÷A2BC2£¬²¢Ö±½Óд³öA2µÄ×ø±êΪ£¨-3£¬4£©£»
£¨3£©Ö±½Óд³ö¡÷A2C2C1µÄÍâ½ÓÔ²µÄÖ±¾¶ÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬$\frac{17}{5}$£©£®
·ÖÎö £¨1£©ÀûÓÃµãÆ½ÒÆµÄ¹æÂÉ£¬Ð´³öµãA¡¢B¡¢CÆ½ÒÆºóµÄ¶ÔÓ¦µãA1¡¢B1¡¢C1µÄ×ø±ê£¬È»ºóÃèµã¼´¿ÉµÃµ½Rt¡÷A1B1C1£»
£¨2£©ÀûÓÃÍø¸ñÌØµãºÍÐýתµÄÐÔÖÊ»³öµãA¡¢CµÄ¶ÔÓ¦µãA2¡¢C2£¬´Ó¶øµÃµ½Rt¡÷A2BC2£¬È»ºóд³öA2µÄ×ø±ê£»
£¨3£©ÀûÓÃÆ½ÒÆÐÔÖʵáÏC1A1B1=¡ÏA£¬¡ÏA2C2B=¡ÏACB£¬ÓÚÊǿɵõ½¡ÏA2C2C1=90¡ã£¬Ôò¡÷A2C2C1µÄÍâ½ÓÔ²µÄÖ±¾¶ÎªA2C1£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßA2C1µÄ½âÎöʽ¼´¿ÉµÃµ½Ö±ÏßA2C1ÓëyÖáµÄ½»µã×ø±ê£®
½â´ð ½â£º£¨1£©Èçͼ£¬Rt¡÷A1B1C1ΪËù×÷£¬µãA1µÄ×ø±êΪ£¨-1£¬1£©£»
£¨2£©Èçͼ£¬Rt¡÷A2BC2ΪËù×÷£¬µãA2µÄ×ø±êΪ£¨-3£¬4£©£»
£¨3£©ÉèÖ±ÏßA2C1µÄ½âÎöʽΪy=kx+b£¬
°ÑA2£¨-3£¬4£©£¬C1£¨2£¬3£©´úÈëµÃ$\left\{\begin{array}{l}{-3k+b=4}\\{2k+b=3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{5}}\\{b=\frac{17}{5}}\end{array}\right.$£¬
ËùÒÔA2C1µÄ½âÎöʽΪy=-$\frac{1}{5}$x+$\frac{17}{5}$£¬
µ±x=0ʱ£¬y=-$\frac{1}{5}$x+$\frac{17}{5}$=y=$\frac{17}{5}$£¬
ËùÒÔ¡÷A2C2C1µÄÍâ½ÓÔ²µÄÖ±¾¶ÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬$\frac{17}{5}$£©£®![]()
¹Ê´ð°¸Îª£¨-1£¬1£©£¬£¨-3£¬4£©£¬£¨0£¬$\frac{17}{5}$£©£®
µãÆÀ ±¾Ì⿼²éÁË×÷ͼ-Ðýת±ä»»£º¸ù¾ÝÐýתµÄÐÔÖÊ¿ÉÖª£¬¶ÔÓ¦½Ç¶¼ÏàµÈ¶¼µÈÓÚÐýת½Ç£¬¶ÔÓ¦Ïß¶ÎÒ²ÏàµÈ£¬ÓÉ´Ë¿ÉÒÔͨ¹ý×÷ÏàµÈµÄ½Ç£¬ÔڽǵıßÉϽØÈ¡ÏàµÈµÄÏ߶εķ½·¨£¬ÕÒµ½¶ÔÓ¦µã£¬Ë³´ÎÁ¬½ÓµÃ³öÐýתºóµÄͼÐΣ®
| A£® | 0£¼k£¼$\frac{1}{2}$ | B£® | $\frac{1}{2}$£¼k£¼1 | C£® | 1£¼k£¼2 | D£® | k£¾2 |
| A£® | -8+3=5 | B£® | £¨-2£©3=6 | C£® | -£¨a-b£©=-a+b | D£® | 2£¨a+b£©=2a+b |