题目内容
如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)当PA+PB的值最小时,求点P的坐标.
![]()
解:(1)∵抛物线的顶点为A(1,4),
∴设抛物线的解析式y=a(x﹣1)2+4,
把点B(0,3)代入得,a+4=3,
解得a=﹣1,
∴抛物线的解析式为y=﹣(x﹣1)2+4;
(2)点B关于x轴的对称点B′的坐标为(0,﹣3),
由轴对称确定最短路线问题,连接AB′与x轴的交点即为点P,
设直线AB′的解析式为y=kx+b(k≠0),
则
,
解得
,
∴直线AB′的解析式为y=7x﹣3,
令y=0,则7x﹣3=0,
解得x=
,
所以,当PA+PB的值最小时的点P的坐标为(
,0).
![]()
练习册系列答案
相关题目