题目内容


如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.

(1)求此抛物线的解析式;

(2)当PA+PB的值最小时,求点P的坐标.


              解:(1)∵抛物线的顶点为A(1,4),

∴设抛物线的解析式y=a(x﹣1)2+4,

把点B(0,3)代入得,a+4=3,

解得a=﹣1,

∴抛物线的解析式为y=﹣(x﹣1)2+4;

(2)点B关于x轴的对称点B′的坐标为(0,﹣3),

由轴对称确定最短路线问题,连接AB′与x轴的交点即为点P,

设直线AB′的解析式为y=kx+b(k≠0),

解得

∴直线AB′的解析式为y=7x﹣3,

令y=0,则7x﹣3=0,

解得x=

所以,当PA+PB的值最小时的点P的坐标为(,0).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网