题目内容
13.已知菱形的周长是24cm,较短的一条对角线是6cm,那么该菱形较大的内角是120°.分析 如图,菱形ABCD的周长为24cm,对角线BD=6cm,根据菱形的性质得AB=BC=CD=AD=6cm,则AB=BD=AD=BC=CD,于是可判断△ABD、△BCD都为等边三角形,所以∴∠ABD=∠CBD=60°,则∠ABC=∠ADC=120°,从而可的答案.
解答 解
:如图,菱形ABCD的周长为24cm,对角线BD=6cm,
∵四边形ABCD为菱形,
∴AB=BC=CD=AD=6cm,
∵BD=6cm,
∴AB=BD=AD=BC=CD,
∴△ABD、△BCD都为等边三角形,
∴∠ABD=∠CBD=60°,
∴∠ABC=∠ADC=120°,
故答案为:120.
点评 本题考查了菱形的性质,菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
练习册系列答案
相关题目
4.化简后能与$\sqrt{2}$是同类二次根式为( )
| A. | $\sqrt{24}$ | B. | $\sqrt{16}$ | C. | $\sqrt{\frac{1}{4}}$ | D. | $\frac{1}{\sqrt{2}}$ |
8.
用尺规作∠AOB平分线的方法如下:①以点O为圆心,任意长为半径作弧交OA,OB于点C,点D;②分别以点C,点D为圆心,以大于$\frac{1}{2}$CD长为半径作弧,两弧交于点P;③作射线OP,则OP平分∠AOB,由作法得△OCP≌△ODP,其判定的依据是( )
| A. | ASA | B. | SAS | C. | AAS | D. | SSS |
5.
为喜迎G20,某校团委举办了以“G20”为主题的学生绘画展览,为美化画面,要在长为30cm、宽为20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),若设彩纸的宽度为xcm,根据题意可列方程为( )
| A. | (30+2x)(20+2x)=1200 | B. | (30+x)(20+x)=1200 | C. | (30-2x)(20-2x)=600 | D. | (30+x)(20+x)=600 |