题目内容

3.如图,有大小两个同心圆,大圆的弦AB与小圆相切,若AB=8,则圆环(阴影部分)的面积是16π.(不取近似值)

分析 设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),以及勾股定理即可求解.

解答 解:设AB于小圆切于点C,连接OC,OB.
∵AB于小圆切于点C,
∴OC⊥AB,
∴BC=AC=$\frac{1}{2}$AB=$\frac{1}{2}$×8=4.
∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2
又∵直角△OBC中,OB2=OC2+BC2
∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.
故答案是:16π.

点评 本题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网