题目内容
3.分析 设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),以及勾股定理即可求解.
解答
解:设AB于小圆切于点C,连接OC,OB.
∵AB于小圆切于点C,
∴OC⊥AB,
∴BC=AC=$\frac{1}{2}$AB=$\frac{1}{2}$×8=4.
∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)
又∵直角△OBC中,OB2=OC2+BC2
∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.
故答案是:16π.
点评 本题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.
练习册系列答案
相关题目
14.
如图,将一个圆分割成甲、乙、丙三个扇形,使它们的圆心角的度数之比为2:3:4.若圆的半径为3,则扇形丙的面积为( )
| A. | $\frac{2}{3}$π | B. | $\frac{4}{9}$π | C. | 3π | D. | 4π |