题目内容
矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 .
考点:翻折变换(折叠问题)
专题:分类讨论
分析:分两种情况:①当∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②当∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.
解答:
解:①当∠EFC=90°时,如图1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=8,
∴BC=AD=8,
在Rt△ABC中,AC=
=
=10,
设BE=x,则CE=BC-BE=8-x,
由翻折的性质得,AF=AB=6,EF=BE=x,
∴CF=AC-AF=10-6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8-x)2,
解得x=3,
即BE=3;
②当∠CEF=90°时,如图2,
由翻折的性质得,∠AEB=∠AEF=
×90°=45°,
∴四边形ABEF是正方形,
∴BE=AB=6,
综上所述,BE的长为3或6.
故答案为:3或6.
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=8,
∴BC=AD=8,
在Rt△ABC中,AC=
| AB2+BC2 |
| 62+82 |
设BE=x,则CE=BC-BE=8-x,
由翻折的性质得,AF=AB=6,EF=BE=x,
∴CF=AC-AF=10-6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8-x)2,
解得x=3,
即BE=3;
②当∠CEF=90°时,如图2,
由翻折的性质得,∠AEB=∠AEF=
| 1 |
| 2 |
∴四边形ABEF是正方形,
∴BE=AB=6,
综上所述,BE的长为3或6.
故答案为:3或6.
点评:本题考查了翻折变化的性质,勾股定理,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.
练习册系列答案
相关题目
| A、 |
| B、 |
| C、 |
| D、 |