题目内容

5.解方程:$\sqrt{2}$x2-$\sqrt{6}$x-$\sqrt{5}$x+$\sqrt{15}$=0.

分析 先把方程左边分组分解得到$\sqrt{2}$x(x-$\sqrt{3}$)-$\sqrt{5}$(x-$\sqrt{3}$)=0,然后利用因式分解法解方程.

解答 解:$\sqrt{2}$x(x-$\sqrt{3}$)-$\sqrt{5}$(x-$\sqrt{3}$)=0,
($\sqrt{2}$x-$\sqrt{5}$)(x-$\sqrt{3}$)=0,
$\sqrt{2}$x-$\sqrt{5}$=0或x-$\sqrt{3}$=0,
所以x1=$\frac{\sqrt{10}}{2}$,x2=$\sqrt{3}$.

点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网