题目内容
通分:
,
,
.
| 1 |
| 2m2+3m |
| 2 |
| 3-2m |
| 2m+5 |
| 4m2-9 |
考点:通分
专题:计算题
分析:先把各分式的分母因式分解,则可确定最简公分母,然后根据分式的基本性质把各分式的分母都化为最简公分母即可.
解答:解:最简公分母为m(2m+3)(2m-3),
=
=
,
=-
=-
,
=
=
.
| 1 |
| 2m2+3m |
| 1 |
| m(2m+3) |
| 2m-3 |
| m(2m+3)(2m-3) |
| 2 |
| 3-2m |
| 2 |
| 2m-3 |
| 2m(2m+3) |
| m(2m+3)(2m-3) |
| 2m+5 |
| 4m2-9 |
| 2m+5 |
| (2m+3)(2m-3) |
| m(2m+5) |
| m(2m+3)(2m-3) |
点评:本题考查了通分:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.
练习册系列答案
相关题目
| A、AD∥BC |
| B、AB∥CD |
| C、AC平分∠BCD |
| D、CA平分∠BAD |