题目内容

16.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于(  )
A.3B.4C.5D.6

分析 如图,连接OA.根据切线的性质得到∠OAP=90°,所以在直角△AOP中,利用勾股定理来求该圆的半径,则易求直径BC的长度.

解答 解:设该圆的半径为r(r>0),
如图,连接OA,
∵PA切⊙O于点A,
∴OA⊥AP,即∠OAP=90°,
又∵PA=4,PB=2,
∴在直角△AOP中,利用勾股定理得到:PA2+OA2=OP2,即42+r2=(r+2)2
则r=3,
∴⊙O的直径BC=2r=6,
故选D.

点评 本题考查了切线的性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网